15 resultados para Mitochondrial Metabolism

em Duke University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proper balancing of the activities of metabolic pathways to meet the challenge of providing necessary products for biosynthetic and energy demands of the cell is a key requirement for maintaining cell viability and allowing for cell proliferation. Cell metabolism has been found to play a crucial role in numerous cell settings, including in the cells of the immune system, where a successful immune response requires rapid proliferation and successful clearance of dangerous pathogens followed by resolution of the immune response. Additionally, it is now well known that cell metabolism is markedly altered from normal cells in the setting of cancer, where tumor cells rapidly and persistently proliferate. In both settings, alterations to the metabolic profile of the cells play important roles in promoting cell proliferation and survival.

It has long been known that many types of tumor cells and actively proliferating immune cells adopt a metabolic phenotype of aerobic glycolysis, whereby the cell, even under normoxic conditions, imports large amounts of glucose and fluxes it through the glycolytic pathway and produces lactate. However, the metabolic programs utilized by various immune cell subsets have only recently begun to be explored in detail, and the metabolic features and pathways influencing cell metabolism in tumor cells in vivo have not been studied in detail. The work presented here examines the role of metabolism in regulating the function of an important subset of the immune system, the regulatory T cell (Treg) and the role and regulation of metabolism in the context of malignant T cell acute lymphoblastic leukemia (T-ALL). We show that Treg cells, in order to properly function to suppress auto-inflammatory disease, adopt a metabolic program that is characterized by oxidative metabolism and active suppression of anabolic signaling and metabolic pathways. We found that the transcription factor FoxP3, which is highly expressed in Treg cells, drives this phenotype. Perturbing the metabolic phenotype of Treg cells by enforcing increased glycolysis or driving proliferation and anabolic signaling through inflammatory signaling pathways results in a reduction in suppressive function of Tregs.

In our studies focused on the metabolism of T-ALL, we observed that while T-ALL cells use and require aerobic glycolysis, the glycolytic metabolism of T-ALL is restrained compared to that of an antigen activated T cell. The metabolism of T-ALL is instead balanced, with mitochondrial metabolism also being increased. We observed that the pro-anabolic growth mTORC1 signaling pathway was limited in primary T-ALL cells as a result of AMPK pathway activity. AMPK pathway signaling was elevated as a result of oncogene induced metabolic stress. AMPK played a key role in the regulation of T-ALL cell metabolism, as genetic deletion of AMPK in an in vivo murine model of T-ALL resulted in increased glycolysis and anabolic metabolism, yet paradoxically increased cell death and increased mouse survival time. AMPK acts to promote mitochondrial oxidative metabolism in T-ALL through the regulation of Complex I activity, and loss of AMPK reduced mitochondrial oxidative metabolism and resulted in increased metabolic stress. Confirming a role for mitochondrial metabolism in T-ALL, we observed that the direct pharmacological inhibition of Complex I also resulted in a rapid loss of T-ALL cell viability in vitro and in vivo. Taken together, this work establishes an important role for AMPK to both balance the metabolic pathways utilized by T-ALL to allow for cell proliferation and to also promote tumor cell viability by controlling metabolic stress.

Overall, this work demonstrates the importance of the proper coupling of metabolic pathway activity with the function needs of particular types of immune cells. We show that Treg cells, which mainly act to keep immune responses well regulated, adopt a metabolic program where glycolytic metabolism is actively repressed, while oxidative metabolism is promoted. In the setting of malignant T-ALL cells, metabolic activity is surprisingly balanced, with both glycolysis and mitochondrial oxidative metabolism being utilized. In both cases, altering the metabolic balance towards glycolytic metabolism results in negative outcomes for the cell, with decreased Treg functionality and increased metabolic stress in T-ALL. In both cases, this work has generated a new understanding of how metabolism couples to immune cell function, and may allow for selective targeting of immune cell subsets by the specific targeting of metabolic pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dual-specificity protein tyrosine phosphatases (PTPs) play integral roles in the regulation of cell signaling. There is a need for new tools to study these phosphatases, and the identification of inhibitors potentially affords not only new means for their study, but also possible therapeutics for the treatment of diseases caused by their dysregulation. However, the identification of selective inhibitors of the protein phosphatases has proven somewhat difficult. PTP localized to mitochondrion 1 (PTPMT1) is a recently discovered dual-specificity phosphatase that has been implicated in the regulation of insulin secretion. Screening of a commercially available small-molecule library yielded alexidine dihydrochloride, a dibiguanide compound, as an effective and selective inhibitor of PTPMT1 with an in vitro concentration that inhibits response by 50% of 1.08 microM. A related dibiguanide analog, chlorhexidine dihydrochloride, also significantly inhibited PTPMT1, albeit with lower potency, while a monobiguanide analog showed very weak inhibition. Treatment of isolated rat pancreatic islets with alexidine dihydrochloride resulted in a dose-dependent increase in insulin secretion, whereas treatment of a pancreatic beta-cell line with the drug affected the phosphorylation of mitochondrial proteins in a manner similar to genetic inhibition of PTPMT1. Furthermore, knockdown of PTPMT1 in rat islets rendered them insensitive to alexidine dihydrochloride treatment, providing evidence for mechanism-based activity of the inhibitor. Taken together, these studies establish alexidine dihydrochloride as an effective inhibitor of PTPMT1, both in vitro and in cells, and support the notion that PTPMT1 could serve as a pharmacological target in the treatment of type II diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship of mitochondrial dynamics and function to pluripotency are rather poorly understood aspects of stem cell biology. Here we show that growth factor erv1-like (Gfer) is involved in preserving mouse embryonic stem cell (ESC) mitochondrial morphology and function. Knockdown (KD) of Gfer in ESCs leads to decreased pluripotency marker expression, embryoid body (EB) formation, cell survival, and loss of mitochondrial function. Mitochondria in Gfer-KD ESCs undergo excessive fragmentation and mitophagy, whereas those in ESCs overexpressing Gfer appear elongated. Levels of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) are highly elevated in Gfer-KD ESCs and decreased in Gfer-overexpressing cells. Treatment with a specific inhibitor of Drp1 rescues mitochondrial function and apoptosis, whereas expression of Drp1-dominant negative resulted in the restoration of pluripotency marker expression in Gfer-KD ESCs. Altogether, our data reveal a novel prosurvival role for Gfer in maintaining mitochondrial fission-fusion dynamics in pluripotent ESCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1-NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are "ciliopathies". Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine if MTND2*LHON4917G (4917G), a specific non-synonymous polymorphism in the mitochondrial genome previously associated with neurodegenerative phenotypes, is associated with increased risk for age-related macular degeneration (AMD). A preliminary study of 393 individuals (293 cases and 100 controls) ascertained at Vanderbilt revealed an increased occurrence of 4917G in cases compared to controls (15.4% vs.9.0%, p = 0.11). Since there was a significant age difference between cases and controls in this initial analysis, we extended the study by selecting Caucasian pairs matched at the exact age at examination. From the 1547 individuals in the Vanderbilt/Duke AMD population association study (including 157 in the preliminary study), we were able to match 560 (280 cases and 280 unaffected) on exact age at examination. This study population was genotyped for 4917G plus specific AMD-associated nuclear genome polymorphisms in CFH, LOC387715 and ApoE. Following adjustment for the listed nuclear genome polymorphisms, 4917G independently predicts the presence of AMD (OR = 2.16, 95%CI 1.20-3.91, p = 0.01). In conclusion, a specific mitochondrial polymorphism previously implicated in other neurodegenerative phenotypes (4917G) appears to convey risk for AMD independent of recently discovered nuclear DNA polymorphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. This turnover was measured by determining the 32P content of phosphatidylinositol and phosphatidic acid after prelabeling of the cellular ATP pool with 32Pi. These phorbol ester-treated cells also displayed a decrease in binding affinity of cellular alpha 1 receptors for agonists with no change in antagonist affinity. By using affinity chromatography on the affinity resin Affi-Gel-A55414, the alpha 1 receptors were purified approximately equal to 300-fold from control and phorbol ester-treated 32Pi-prelabeled cells. As assessed by NaDodSO4/polyacrylamide gel electrophoresis, the Mr 80,000 alpha 1-receptor ligand-binding subunit is a phosphopeptide containing 1.2 mol of phosphate per mol of alpha 1 receptor. After phorbol ester treatment this increased to 3.6 mol of phosphate per mol of alpha 1 receptor. The effect of phorbol esters on norepinephrine-stimulated inositol phospholipid turnover and alpha 1-receptor phosphorylation showed the same rapid time course with a t1/2 less than 2 min. These results indicate that calcium- and phospholipid-dependent protein kinase may play an important role in regulating the function of receptors that are coupled to the inositol phospholipid cycle by phosphorylating and deactivating them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. METHODOLOGY: The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC) of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. PRINCIPAL FINDINGS: Seventeen of 22 ACCs (77%) carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6%) carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9%) with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH) complex. CONCLUSIONS/SIGNIFICANCE: Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance, but may be associated with alterations in transcription or replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.

To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.

I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.

Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Previous mathematical models for hepatic and tissue one-carbon metabolism have been combined and extended to include a blood plasma compartment. We use this model to study how the concentrations of metabolites that can be measured in the plasma are related to their respective intracellular concentrations. METHODS: The model consists of a set of ordinary differential equations, one for each metabolite in each compartment, and kinetic equations for metabolism and for transport between compartments. The model was validated by comparison to a variety of experimental data such as the methionine load test and variation in folate intake. We further extended this model by introducing random and systematic variation in enzyme activity. OUTCOMES AND CONCLUSIONS: A database of 10,000 virtual individuals was generated, each with a quantitatively different one-carbon metabolism. Our population has distributions of folate and homocysteine in the plasma and tissues that are similar to those found in the NHANES data. The model reproduces many other sets of clinical data. We show that tissue and plasma folate is highly correlated, but liver and plasma folate much less so. Oxidative stress increases the plasma S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio. We show that many relationships among variables are nonlinear and in many cases we provide explanations. Sampling of subpopulations produces dramatically different apparent associations among variables. The model can be used to simulate populations with polymorphisms in genes for folate metabolism and variations in dietary input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies from this laboratory have shown that CNS myelin is phagocytized and metabolized by cultured rat macrophages to a much larger extent when myelin is pretreated with serum containing antibodies to myelin constituents than when it is left untreated or pretreated with non-specific serum. In this study the effect of cerebrospinal fluid (CSF) from rabbits with experimental allergic encephalomyelitis (EAE) in promoting myelin phagocytosis was examined. Fourteen rabbits were immunized with purified myelin in Freund's complete adjuvant, seven of which developed clinical EAE symptoms. Serum and CSF were collected from EAE and control rabbits, and the CSF was centrifuged to remove cells. Sera and CSF from these rabbits and from Freund's adjuvant-immunized controls and untreated controls were measured for IgG content by radial diffusion assay, their myelin antibody characteristics were analyzed by immunoblots, and the ability of these serum and CSF samples to promote myelin phagocytosis when used for myelin opsonization was examined. The ability of a CSF sample to enhance radioactive myelin uptake and phagocytosis by cultured macrophages as measured by the appearance of radioactive cholesterol ester was linearly proportional to its total IgG titer, and correlated approximately both with clinical symptoms of the animal and the presence of antibody against the myelin constituents myelin basic protein, proteolipid protein, and galactocerebroside. The cholesterol esterification activities of EAE sera correlated to a lesser extent with IgG levels and clinical symptoms.(ABSTRACT TRUNCATED AT 250 WORDS)